Role of Arginase in Vessel Wall Remodeling
نویسنده
چکیده
Arginase metabolizes the semi-essential amino acid l-arginine to l-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and l-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages toward an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide (NO) synthesis by competing with NO synthase for substrate, l-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملArginase in the Vascular Endothelium: Friend or Foe?
This special issue, entitled “the role of arginase in endothelial dysfunction,” assembles original contributions (1–4), as well as timely reviews (5–12) broadly related to the deleterious activities of the manganese-containing enzyme arginase in the vascular endothelium. The arginase 1 isoform is cytosolic and is mainly localized in the liver, where it performs a crucial role in eliminating nit...
متن کاملThyroid hormone-dependent differential regulation of multiple arginase genes during amphibian metamorphosis.
We have cloned three nonhepatic arginase genes in Xenopus laevis. The deduced amino acid sequences of the three arginases are almost identical and share about 60% identity with mammalian as well as Xenopus liver arginase. Both the liver and nonhepatic arginase genes are activated early during embryogenesis. The liver arginase gene is strongly expressed in tadpole liver, but weakly in other tiss...
متن کاملArginase promotes neointima formation in rat injured carotid arteries.
OBJECTIVE Arginase stimulates the proliferation of cultured vascular smooth muscle cells (VSMCs); however, the influence of arginase on VSMC growth in vivo is not known. This study investigated the impact of arginase on cell cycle progression and neointima formation after experimental arterial injury. METHODS AND RESULTS Balloon injury of rat carotid arteries resulted in a sustained increase ...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013